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FRW Universe: eAµ = diag(1, a, a, a)

gµ⌫ = diag(1,�a2,�a2,�a2)

purely perturbations



e0µ = �0µ(1 +  ) + a�iµ@i(F + ↵) + a�iµ(Gi + ↵i)

eaµ = a�aµ(1� ') + a�iµ(@i@
aB + @aCi + ha

i)

+ a�iµB
a
i + �0µ(@

a↵+ ↵a)

g00 = 1 + 2 

gi0 = a(@iF +Gi)

gij = �a2[(1� 2')�ij + hij + @i@jB + @jCi + @iCj ]

eAµ

Vierbein perturbation YPW & Geng, JHEP 11 (2012) 142 

gµ⌫



e0µ = �0µ(1 +  ) + a�iµ@i(F + ↵) + a�iµ(Gi + ↵i)

eaµ = a�aµ(1� ') + a�iµ(@i@
aB + @aCi + ha

i)

+ a�iµB
a
i + �0µ(@

a↵+ ↵a)
eAµ

new members : ↵ , ↵i and Ba
i

@i↵
i = 0 ;Bij +Bji = 0

Vierbein perturbation

1    +   2     +       3      =    6

YPW & Geng, JHEP 11 (2012) 142 



Bij = ✏ijk(@
k�̃ + Ṽ k)
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è Do not involve in linear perturbations



Teleparallel equivalence of general 
relativity (TEGR)
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FIG. 3. (Colour online) The power spectra for the large-scale structure of the f(T ) gravity model with f(T ) = T −

µ2(1+n)/(−T )n. Upper-left Panel: the CMB spectrum for different values of n – 0 (black solid curve), 0.1 (green dotted
curve), −0.1 (cyan dashed curve), 0.2 (purple dash-dotted curve) and −0.2 (pink dash-triple-dotted curve). Upper-right Panel:
the same as the upper-left panel, but for the matter power spectrum at redshift 0 (today). Lower-left Panel: the late-time
evolution of the dark matter density contrast ∆CDM on different scales (as indicated besides the curves); three values of n have
been considered – n = 0.0 (solid curves), 0.1 (dotted curves) and −0.1 (dashed curves). Lower-right Panel: the same as the
lower-left panel, but for the late-time evolution of the gravitational potential φ on different scales. The physical parameters
are the same as listed in the caption of Fig. 1, and three species of massless neutrinos are used.

this will be governed by a dynamical equation. In the
f(T ) gravity, however, its value is given by a constraint
equation. This is a consequence of the fact that the right-
hand side of Eq. (12) is not a priori antisymmetric, but it
is required to be as a consequence of the field equations.
This leads to the two different expressions in Eqs. (66)
and (67), which imply that

kH(Z +æ) =
3

2

(

H′ −H2
)

η . (75)

This equation can be used to determine æ in terms of
Z, η and background quantities.
We can then eliminate æ in all the relevant perturba-

tion equations. Nonetheless, it is interesting to see how
the new degree of freedom æ evolves in time on differ-
ent length scales, and this is shown in Fig. 2. Since æ
is not a gauge invariant quantity, what we have plotted

is ε ≡ æ + σ, which is gauge invariant. Note that in the
conformal Newtonian gauge, in which σ = 0 (c.f. Ap-
pendix B), the quantity ε coincides with æ. We show the
results for n = 0.1 in Fig. 2. We see that ε decreases in
time, and the decrease becomes more rapid as one moves
to smaller scales (bigger k’s). Therefore, we expect any
deviations from the ΛCDM model to be more important
on large scales than on small scales. We will confirm this
below.

We can now examine the growth of the dark-matter
density contrast in the context of the f(T ) gravity model.
For simplicity, we shall assume that the universe is filled
with dark matter only, which is a fair approximation at
late times. Taking the spatial derivative of the Raychaud-

YPW & Geng, JHEP 11 (2012) 142 
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: Non-minimal gravity-field tracker (NGFT)
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Teleparallel dark energy
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My messages are:

!   The propagating degrees of freedom do not increase in 
teleparallel dark energy models, despite variables in the 
perturbed vierbein field is greater than that of the 
metric perturbations. 

!   The density perturbation growth shows that 
gravitational interactions in potential-driven 
(quintessence-like) expansion are less stronger than 
those in NGFT-driven cosmic accelerations.
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A
µ (x) + æA

µ (x)
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A
µ (x) + æA

µ (x)

è gµ⌫(x) = ⌘AB e

A
µ (x) e

B
⌫ (x) = ⌘AB ê
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